
Introduction to Computer Science:
Programming Methodology

Lecture 1 Introduction

Prof. Guiliang Liu

School of Data Science

Instructor: Guiliang Liu

• Office Hours: Monday 2:50 PM -3:50 PM,
Room 302, Teaching Complex C.

• Email: liuguiliang@cuhk.edu.cn

Lectures:

• Room: Teaching Complex A401.

• Onsite only, No online lectures.

Who I am Guiliang Liu :)

2

Personal Web:

https://guiliang.me/

Course Web:

https://guiliang.github.io/courses/cuhk-csc-1001/csc_1001.html

Learning Objectives

• This course introduces the basics of computer programming
using Python.

• Students will learn the basic elements of modern computer
systems, key programming concepts, problem solving and
basic algorithm design.

Key Topics

• Introduction to modern computers
• Preliminary knowledge for computer programming
• Basic introduction to Python language
• Data types and operators in Python language
• Input/output
• Flow control and loop
• Function
• List
• Basic data structure
• Introduction to algorithm design
• Introduction to object oriented programming

Assessment

Assignments × 4 10% × 4

Mid-term quiz 20%

Final exam 40%

Course Materials

•All lecture notes and sample code used in classes will
be provided to students via Blackboard (bb.cuhk.edu
cn)

•Recommended readings
➢ Online resources: https://www.python.org/doc/

➢ Learning Python, 5th Edition, by Mark Lutz, Publisher: O’Reilly
media

Course Components

Activity Hours/week

Lecture 40 minutes × 4

Tutorial 50 minutes × 1

Indicative Teaching Plans

Week Content/ topic/ activity

1
Introduction to modern computers;
Preliminary knowledge for computer programming;

2
Basic introduction to Python language;
Data types and operators in Python language;
Input/output;

3 Flow control and loop;
4 Function;
5 List;
6 Introduction to object oriented programming, part I
7 Review for mid-term quiz;
8 Introduction to object oriented programming, part II
9 Data Structure, part I;

10 Data Structure, part II;
11 Introduction to algorithm design, part I;
12 Introduction to algorithm design, part II;
13 Introduction to algorithm design, part III;
14 Review for final exam;

Why learn programming?

• Computer is built to help people solve
problems.

• Computer does not understand what we
say.

• We need to communicate with computers
using their languages (computer
programming language).

• Assembly, C, C++, Java and Python.

User Interface

• Programmers solve problems like data, information, networks on
behalf of users.

Programmer

Programmer

• Professional programmer writes computer
programs and develops software.

• A junior programmer gets a salary of 10-30k
RMB in an internet company like Tencent.

• A programmer can earn up to 500k – 1m
USD in Google!!

• Software and internet are huge industries.

Why be a programmer?

• Even if you are NOT in the IT industry, programming is
pervasive in your life,

➢ Electrical/electronic engineer – control program

➢ Economist – mathematical modeling

➢ Salesman – analyzing sales data

➢ …

What is Code? Software? Program?

•A sequence of instructions.

•Computers take the instructions and execute them.

• It is a little piece of our intelligence in the computer.

• Intelligence which is re-usable.

Computers are good at following instructions

• Humans can easily make mistakes when following a set of
instructions.

• On the contrary, computers (usually) won’t make mistakes,
regardless of they are given 10 or 10 billion instructions !!

Computers

Are they computers ？

calculator router
robot

smartwatch Smart TV Smart glasses

Computer Hardware

Program

Von Neumann Architecture

• The modern computer
architecture is proposed by John
Von Neumann

The theoretical foundation of
computer science

• The theoretical foundation of
computer science (Turing Machine)
are built by Alan Turing.

• Father of theoretical computer science
and artificial intelligence.

• Computability theory and Turing test.

A movie about Turing

Also another similar movie about John Nash： A beautiful mind (美丽心灵)

Key components in a computer

• Central processing unit (CPU): execute your program. Similar to human
brain, very fast but not that smart

• Input device: take inputs from users or other devices

• Output device: output information to users or other devices

• Main memory: store data, fast and temporary storage

• Secondary memory: slower but large size, permanent storage

Central Processing Unit

• A processor contains two units, a control unit (CU) and an
arithmetic/logic unit (ALU)

• CU is used to fetch commands from the memory

• ALU contains the electric circuits which can execute
commands

Central Processing Unit

• Processor manufacturer: Intel, AMD, ARM, etc

Memory/Storage

• High speed cache

• ROM

• RAM

• Flash

• Hard disk

Input/output devices

• Input devices: mouse,
keyboard, panel, touch screen,
audio input, mind reading, etc

• Output devices: screen, audio
output, etc

Human-Machine Interaction

Any other input devices?

Any other input devices?

Any other input devices?

Any other output devices?

VR Holographic projection

How the hard disk works

http://v.youku.com/v_show/id_XNjA4NzMxNDk2.html?from=s
1.8-1-1.2

What can a computer actually understand?

• The computers used nowadays can
understand only binary number (i.e. 0
and 1)

• Computers use voltage levels to
represent 0 and 1

• NRZL and NRZI coding

• The instructions expressed in binary
code is called machine language

Programing Language

https://www.quora.com/I-am-an-11th-grader-I-find-it-quite-difficult-to-write-C++-code-especially-when-the-only-way-to-practice-is-to-solve-maths-problems-Should-I-
keep-learning-C++-or-drop-it-for-C

Low level language – Assembly Language

• An assembly language is a low-level
programming language, in which there is a
very strong (generally one-to-one)
correspondence between the language and
machine code instructions.

• Each assembly language is specific to a
particular computer architecture

• Assembly language is converted into
executable machine code by a utility
program referred to as an assembler

C Language (1969 - 1973)
• C was developed by Dennis Ritchie between 1969 and 1973 at AT&T Bell Labs

• One of the early high-level programming language

• Somewhere between assembly and other high level languages

• Provide powerful functionalities for low level memory manipulations

• Have the highest efficiency within high level languages

• Very widely used in low level applications, such as operating systems, embedded
programming, super computers, etc

C++ Language (1979)

• C++ was developed by Bjarne Stroustrup at Bell Labs since 1979

• Inherent major features of C

• An object-oriented programming language, supporting code reuse

• High efficiency and powerful in low level memory manipulation

• Still platform dependent

Java Language (1995)

• Java was developed by James Gosling at Sun Microsystems (which has
since been acquired by Oracle Corporation) and released in 1995

• A new generation of general-purpose object oriented programming
language

• Platform independent, “write once, run anywhere” (WORA)

• Java is one of the most popular programming languages currently in
use

Python (1991)

• Developed by Guido van Rossum in 1989, and formally released in 1991

• An open source, object oriented programming language

• Powerful libraries

• Powerful interfaces to integrate other programming languages (C/C++,
Java, and many other languages)

• In AI research, we mainly use Python.

Language efficiency v.s. development efficiency

• High level languages cannot be executed directly

• High level languages must be converted into low level languages first

• Lower level languages have higher language efficiency (they are faster
to run on a computer)

• Higher level languages have higher development efficiency (it is easier
to write programs in these languages)

Operating Systems

• The operating system (OS) is a low level program,
which provides all basic services for managing and
controlling a computer’s activities

• Applications are programs which are built based upon
an OS

• Main functions of an OS:
✓ Controlling and monitoring system activities

✓ Allocating and assigning system resources

✓ Scheduling operations

• Popular OS: Windows, Mac OS, Linux, iOS, Android…

• Break

Slogan for Python

Life is short, use Python

Review of last lecture

• Von Neumann Architecture

• CPU and memory

• Input devices and output devices

• Programming language

• Operation system

How about the movie

Data Representation and Conversion

• We use positional notation (进位记数法) to represent or encode
numbers in a computer

• Data are stored essentially as binary numbers in a computer

• In practice, we usually represent data using either binary (二进制),
decimal (十进制), octal (八进制) or hexadecimal (十六进制) number
systems

• We may need to convert data between different number systems

The basic idea of positional notation

• Each positional number system contains two elements, a base (基数)
and a set of symbols

• Using the decimal system (十进制系统) as an example, its base is 10,
and the symbols are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• When a number “hits” 9, the next number will not be a different
symbol, but a “1” followed by a “0” (逢十进一)

Decimal number system

• In the decimal number system, the base is 10, the symbols include 0, 1, 2,
3, 4, 5, 6, 7, 8, 9

• Every number can be decomposed into the sum of a series of numbers,
each is represented by a positional value times a weight

• 𝑁 = 𝑎𝑛 × 10𝑛 + 𝑎𝑛−1 × 10𝑛−1 + 𝑎𝑛−2 × 10𝑛−2 … … + 𝑎0 × 100 + 𝑎−1 ×
10−1 + 𝑎−2 × 10−2 …

• 𝑎𝑛 is the positional value (ranging from 0 to 9), while 10𝑛 represents the
weight

Binary number system

• In the binary system, the base is 2, we use only two symbols 0 and 1

• “10” is used when we hit 2 (逢二进一)

• 𝑁 = 𝑎𝑛 × 2𝑛 + 𝑎𝑛−1 × 2𝑛−1 + 𝑎𝑛−2 × 2𝑛−2 … … + 𝑎0 × 20 +
 𝑎−1 × 2−1 + 𝑎−2 × 2−2 …

• 𝑎𝑛 is the positional value (ranging from 0 to 1), while 2𝑛 represents
the weight

Why use binary number?

• Easy to implement physically

• Simple calculation rules

• Easy to combine arithmetic and logic operations

Hexadecimal number system

• In the hexadecimal system, the base is 16, we use 16 symbols {0, 1, 2, 3, 4,
5, 6, 7, 8, 9, a, b, c, d, e, f}

• “10” is used when we hit 16 (逢十六进一)

• 𝑁 = 𝑎𝑛 × 16𝑛 + 𝑎𝑛−1 × 16𝑛−1 + 𝑎𝑛−2 × 16𝑛−2 … … + 𝑎0 × 160 + 𝑎−1 ×
16−1 + 𝑎−2 × 16−2 …

• 𝑎𝑛 is the positional value (ranging from 0 to 15), while 16𝑛 represents the
weight

Octal number system

?

Converting binary number into decimal number

Example

Practice (10110.11)2= (?)10

Converting binary number into decimal number

Answer

Converting octal number into decimal number

Example

Practice (35.7)8= (?)10

Converting octal number into decimal number

Answer

Converting hexadecimal number into decimal
number

Example

Practice (𝐴7𝐷. 𝐸)16= (?)10

Converting hexadecimal number into decimal
number

Answer

Converting other number system into decimal
system

•Other number system can also be converted into
decimal system in a similar way

•We just need to change the corresponding base

Some tests: converting into decimal system

• (110110)_2 = (?)_10

• (101011.11)_2 = (?)_10

• (120)_8 = (?)_10

• (34.01)_8 = (?)_10

• (BCA)_16 = (?)_10

• (E05.C)_8 = (?)_10

Some tests: converting into decimal system

• (110110)_2 = (118)_10

• (101011.11)_2 = (43.75)_10

• (120)_8 = (80)_10

• (34.01)_8 = (28.015625)_10

• (BCA)_16 = (3018)_10

• (E05.C)_8 = (3589.75)_10

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Converting decimal integer into binary integer

Example: (57)10= (?)2

Higher position

Lower position

Converting decimal fraction into binary fraction

Example: (0.875)10= (?)2

0.875 × 2 = 𝟏. 75 Integer part: 1
0.75 × 2 = 𝟏. 5 Integer part: 1
0.5 × 2 = 𝟏 Integer part: 1

Answer: (0.875)10= (0.111)2

Practice: (0.6875)10= (?)2

Lower position

Higher position

Converting decimal fraction into binary fraction

Answer:

0.6875 × 2 = 𝟏. 375 Integer part: 1
0.375 × 2 = 𝟎. 75 Integer part: 0
0.75 × 2 = 𝟏.5 Integer part: 1
0.5 × 2 = 𝟏 Integer part: 1

So, (0.6875)10= (0.1011)2

Lower position

Higher position

Converting decimal number into binary number

• For a decimal number that has both integer and fractional
parts

• Convert the integer and fractional parts separately

• Example: (215.3125)10 = (?)2

Converting decimal number into binary number

Answer:

215 10 = 11010111 2

0.3125 10 = 0.0101 2

215.3125 10 = 11010111.0101 2

The one-to-one relationship between binary and
octal numbers

There is a “one-to-one” (一一对应) relationship between three digits
binary number and one digit octal number

(0)8 = (000)2
(1)8 = (001)2
(2)8 = (010)2
(3)8 = (011)2
(4)8 = (100)2
(5)8 = (101)2
(6)8 = (110)2
(7)8 = (111)2

Converting octal number into binary number

• Convert each octal digit into binary number of three digits

• Keep the digit order unchanged

• Example: (0.754)8 = (?)2

• Practice: (16.327)8 = (?)2

Converting octal number into binary number

Answer:

Converting hexadecimal number into binary
number

• Convert each hexadecimal digit into binary number of four digits

• Keep the digit order unchanged

• Example: (4𝐶. 2𝐸)16 = (?)2

• Practice: (𝐴𝐷. 7𝐹)16 = (?)2

Converting hexadecimal number into binary
number

Answer:

Converting binary number into octal number

• Starting from lower positions, convert every three digits of the integer part
into a octal digit

• When there is not enough higher positions in the integer part, fill with 0

• Starting from higher positions, convert every three digits of the fractional
part into a octal digit

• When there is not enough lower positions in the fractional part, fill with 0

• Keep the digit order unchanged

Converting binary number into octal number

Example:

Practice:

Converting binary number into octal number

Answer:

Converting binary number into hexadecimal
number
• Starting from lower positions, convert every four digits of the integer

part into a octal digit

• When there is not enough higher positions in the integer part, fill with 0

• Starting from higher positions, convert every four digits of the fractional
part into a octal digit

• When there is not enough lower positions in the fractional part, fill with
0

• Keep the digit order unchanged

Converting binary number into hexadecimal
number

Example:

The units of information (data)

• Bit (比特/位): a binary digit which takes either 0 or 1

• Bit is the smallest information unit in computer programming

• Byte (字节): 1 byte = 8 bits, every English character is represented by 1
byte

• KB (千字节)：1 KB = 2^10 B = 1024 B
• MB (兆字节)：1MB = 2^20 B = 1024 KB
• GB (千兆字节)：1GB = 2^30 B = 1024 MB
• TB (兆兆字节)：1TB = 2^40 B = 1024 GB

Memory and addressing

• A computer’s memory consists
of an ordered sequence of
bytes for storing data

• Every location in the memory
has a unique address

• The key difference between
high and low level
programming languages is
whether programmer has to
deal with memory addressing
directly

Practice

• 135.8125 10 =（10000111.1101）2

• 1314.205 8 =（1 011 001 100.010 000 101）2

•（0101010000.0010110011）2 = 520.1314 8

•（0101010000.0010110011）2 = 150.2𝐶𝐶 16

Thanks

Odds are the person on your
left is going to be a loser. The

person on your right,
meanwhile, will also be a

loser. And you, in the middle?
What can you expect? Loser.

Larry Ellison, CEO of Oracle Corporation

Programs for human

• Right hand around your head

• Left hand around your belly

• Straighten out right hand

• Left hand rests on your hip

• One step to the right while
straighten out left hand

• Keep down and swing your
ham

• ……

http://v.youku.com/v_show/id_XNzM1MTgyMTA4.html?from=
y1.2-1-98.3.2-2.1-1-1-1-0

	Slide 1: Introduction to Computer Science: Programming Methodology
	Slide 2: Who I am Guiliang Liu :)
	Slide 3
	Slide 4: Learning Objectives
	Slide 5: Key Topics
	Slide 6: Assessment
	Slide 7: Course Materials
	Slide 8: Course Components
	Slide 9: Indicative Teaching Plans
	Slide 10: Why learn programming?
	Slide 11
	Slide 12: Programmer
	Slide 13: Why be a programmer?
	Slide 14: What is Code? Software? Program?
	Slide 15: Computers are good at following instructions
	Slide 16: Computers
	Slide 17: Are they computers ？
	Slide 18: Computer Hardware
	Slide 19: Von Neumann Architecture
	Slide 20: The theoretical foundation of computer science
	Slide 21: A movie about Turing
	Slide 22: Key components in a computer
	Slide 23: Central Processing Unit
	Slide 24: Central Processing Unit
	Slide 25: Memory/Storage
	Slide 26: Input/output devices
	Slide 27: Any other input devices?
	Slide 28: Any other input devices?
	Slide 29: Any other input devices?
	Slide 30: Any other output devices?
	Slide 31: How the hard disk works
	Slide 32: What can a computer actually understand?
	Slide 33: Programing Language
	Slide 34: Low level language – Assembly Language
	Slide 35: C Language (1969 - 1973)
	Slide 36: C++ Language (1979)
	Slide 37: Java Language (1995)
	Slide 38: Python (1991)
	Slide 39: Language efficiency v.s. development efficiency
	Slide 40: Operating Systems
	Slide 41
	Slide 42: Slogan for Python
	Slide 43: Review of last lecture
	Slide 44: How about the movie
	Slide 45: Data Representation and Conversion
	Slide 46: The basic idea of positional notation
	Slide 47: Decimal number system
	Slide 48: Binary number system
	Slide 49: Why use binary number?
	Slide 50: Hexadecimal number system
	Slide 51: Octal number system
	Slide 52: Converting binary number into decimal number
	Slide 53: Converting binary number into decimal number
	Slide 54: Converting octal number into decimal number
	Slide 55: Converting octal number into decimal number
	Slide 56: Converting hexadecimal number into decimal number
	Slide 57: Converting hexadecimal number into decimal number
	Slide 58: Converting other number system into decimal system
	Slide 59: Some tests: converting into decimal system
	Slide 60: Some tests: converting into decimal system
	Slide 61: Converting decimal integer into binary integer
	Slide 62: Converting decimal fraction into binary fraction
	Slide 63: Converting decimal fraction into binary fraction
	Slide 64: Converting decimal number into binary number
	Slide 65: Converting decimal number into binary number
	Slide 66: The one-to-one relationship between binary and octal numbers
	Slide 67: Converting octal number into binary number
	Slide 68: Converting octal number into binary number
	Slide 69: Converting hexadecimal number into binary number
	Slide 70: Converting hexadecimal number into binary number
	Slide 71: Converting binary number into octal number
	Slide 72: Converting binary number into octal number
	Slide 73: Converting binary number into octal number
	Slide 74: Converting binary number into hexadecimal number
	Slide 75: Converting binary number into hexadecimal number
	Slide 76: The units of information (data)
	Slide 77: Memory and addressing
	Slide 78: Practice
	Slide 79
	Slide 80
	Slide 81: Programs for human

