A & F XK ZE CCRID

The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 1 Introduction

Prof. Guiliang Liu
School of Data Science

Who | am Guiliang Liu :)

Instructor: Guiliang Liu

e Office Hours: Monday 2:50 PM -3:50 PM,
Room 302, Teaching Complex C.

* Email: liuguiliang@cuhk.edu.cn
Lectures:

* Room: Teaching Complex A401.
* Onsite only, No online lectures.

Personal Web:
https://guiliang.me/

Course Web:
https://guiliang.github.io/courses/cuhk-csc-1001/csc_1001.html

Learning Objectives

* This course introduces the basics of computer programming
using Python.

 Students will learn the basic elements of modern computer
systems, key programming concepts, problem solving and
basic algorithm design.

Key Topics

* Introduction to modern computers

* Preliminary knowledge for computer programming
* Basic introduction to Python language

e Data types and operators in Python language
* Input/output

* Flow control and loop

* Function

* List

* Basic data structure

* Introduction to algorithm design

* Introduction to object oriented programming

Assessment

Course Materials

* All lecture notes and sample code used in classes will
be provided to students via Blackboard (bb.cuhk.edu
cn)

e Recommended readings

» Online resources: https://www.python.org/doc/

» Learning Python, 5th Edition, by Mark Lutz, Publisher: O’Reilly
media

Course Components

Indicative Teaching Plans

Week Content/ topic/ activity
Introduction to modern computers;

Preliminary knowledge for computer programming;
Basic introduction to Python language;

1

2 Data types and operators in Python language;
Input/output;

3 Flow control and loop;

4 Function;

5 List;

6 Introduction to object oriented programming, part |

7 Review for mid-term quiz;

8 Introduction to object oriented programming, part Il

9 Data Structure, part |;

10 Data Structure, part ll;

11 Introduction to algorithm design, part |;

12 Introduction to algorithm design, part Ii;

13 Introduction to algorithm design, part lli;

14 Review for final exam;

Why learn programming?

* Computer is built to help people solve
problems.

* Computer does not understand what we
say.

* We need to communicate with computers
using their languages (computer
programming language).

* Assembly, C, C++, Java and Python.

User | ' ‘ Interface
-

Computer

Hardware + Software

Data Information Networks
Programmer

* Programmers solve problems like data, information, networks on
behalf of users.

Programmer

* Professional programmer writes computer
programs and develops software.

* A junior programmer gets a salary of 10-30k
RMB in an internet company like Tencent.

e A programmer can earn up to 500k —1m
USD in Google!!

e Software and internet are huge industries.

Alibaba.com

PLANET o

Why be a programmer?

* Even if you are NOT in the IT industry, programming is
pervasive in your life,

» Electrical/electronic engineer — control program
» Economist — mathematical modeling
» Salesman — analyzing sales data

> ...

What is Code? Software? Program?

* A sequence of instructions.
* Computers take the instructions and execute them.

* It is a little piece of our intelligence in the computer.
* Intelligence which is re-usable.

Computers are good at following instructions

* Humans can easily make mistakes when following a set of
Instructions.

* On the contrary, computers (usually) won’t make mistakes,
regardless of they are given 10 or 10 billion instructions !!

Computers

Are they computers ?

router

Smart TV Smart glasses
smartwatch

Computer Hardware

= Output Devices
(“ CPU
Input Devices —— J
S y r
Main Memory - Secondary
i Memaory

Program

Von Neumann Architecture

* The modern computer
architecture is proposed by John
Von Neumann

Central Processing Unit

Control Unit

Input

Arithmetic/Logic Unit Output
Device

Device

Memeory Unit

The theoretical foundatlon of
computer science

* The theoretical foundation of
computer science (Turing Machine)
are built by Alan Turing.

* Father of theoretical computer science
and artificial intelligence.

* Computability theory and Turing test.

A movie about Turing

&k

The Imitation Game

Also another similar movie about John Nash: A beautiful mind (ERJ/I(>R)

Key components in a computer

* Central processing unit (CPU): execute your program. Similar to human
brain, very fast but not that smart

* Input device: take inputs from users or other devices
* Output device: output information to users or other devices
* Main memory: store data, fast and temporary storage

e Secondary memory: slower but large size, permanent storage

Central Processing Unit

e A processor contains two units, a control unit (CU) and an
arithmetic/logic unit (ALU)

* CU is used to fetch commands from the memory

 ALU contains the electric circuits which can execute
commands

Central Processing Unit

* Processor manufacturer: Intel, AMD, ARM, etc

Memory/Storage

* High speed cache

* ROM

* RAM

* Flash

e Hard disk

o @E@ED s ¢ oS mm -~
i “““‘0 \

Input/output devices

* Input devices: mouse,
keyboard, panel, touch screen,
audio input, mind reading, etc

* OQutput devices: screen, audio
output, etc

Human-Machine Interaction

Any other input devices?

Any other input devices?

FEMDZ=h

Any other input devices?

Any other output devices?

VR Holographic projection

How the hard disk works

http://v.youku.com/v_show/id_XNjA4NzMxNDk2.htm|?from=s
1.8-1-1.2

What can a computer actually understand?

ool numerical walue
* The computers used nowadays can 0010 mmerical walie
understand only binary number (i.e. 0 5100 mumerieal value
and 1)
1 0070 nmumerical walue
* Computers use voltage levels to 0101011001

represent O and 1

NRZ-L
/

Time

* NRZL and NRZI coding

* The instructions expressed in binary SR

o

NRZ-I
Y

code is called machine language

Programing Language

Flow of Compilati
Scripting/Interpreted Languages S Dl

Perl, Python, Shell, Java

Compiling High/Middle Level Languages

C, C++
(What Most Malware Is Written In)

Assembly Language

Intel X86, etc. A
(First Layer of Human Readable Code)
Machine Code

Hexadecimal representations of Binary Code Read
By The Operating System

Binary code

Not Human Readable

v Binary code read by hardware

Dissasemble

https://www.quora.com/l-am-an-11th-grader-I-find-it-quite-difficult-to-write-C++-code-especially-when-the-only-way-to-practice-is-to-solve-maths-problems-Should-1-
keep-learning-C++-or-drop-it-for-C

Low level language — Assembly Language

* An assembly language is a low-level ¢ meor: none ©© T
programming language, in which there is a } s %
Very Strong (genera”y One_to_one) * Returns to monitor if not HEX input
O1lE 8D FO INHEX BSR INCH ET A CHAR
correspondence between the language and o0 a1 20 oA #o o
machine code instructions. co24 81 39 QA #9 e
c028 81 41 CMP A #'A
C02A 2B 09 BMI HEXERR NOT HEX
c02C 81 46 CMP A #'F
. . CO2E 2E 05 BGT HEXERR
* Each assembly language is specific to a G tioh mooos AR fhr e Eascw womims
particular computer architecture o
C035 7E CO AF HEXERR JMP CTRL RETURN TO CONTROL LOOP

Assembly Source File

add 2, .3-,. result

Machine-Code File

1101101010011010

* Assembly language is converted into
executable machine code by a utility
program referred to as an assembler

|

Assembler

C Language (1969 - 1973)

* Cwas developed by Dennis Ritchie between 1969 and 1973 at AT&T Bell Labs

One of the early high-level programming language

Somewhere between assembly and other high level languages

Provide powerful functionalities for low level memory manipulations

Have the highest efficiency within high level languages

Very widely used in low level applications, such as operating systems, embedded
programming, super computers, etc

C++ Language (1979)

e C++ was developed by Bjarne Stroustrup at Bell Labs since 1979

* Inherent major features of C

* An object-oriented programming language, supporting code reuse
* High efficiency and powerful in low level memory manipulation

e Still platform dependent

Java Language (1995)

 Java was developed by James Gosling at Sun Microsystems (which has
since been acquired by Oracle Corporation) and released in 1995

* A new generation of general-purpose object oriented programming
language

* Platform independent, “write once, run anywhere” (WORA)

* Java is one of the most popular programming languages currently in
use

Python (1991)

* Developed by Guido van Rossum in 1989, and formally released in 1991
* An open source, object oriented programming language
e Powerful libraries

» Powerful interfaces to integrate other programming languages (C/C++,
Java, and many other languages)

* |[n Al research, we mainly use Python.

Language efficiency v.s. development efficiency
* High level languages cannot be executed directly
* High level languages must be converted into low level languages first

* Lower level languages have higher language efficiency (they are faster
to run on a computer)

* Higher level languages have higher development efficiency (it is easier
to write programs in these languages)

Operating Systems

* The operating system (OS) is a low level program,
which |orOV|des all basic services for managing and
controlling a computer’s activities

. Ap;())liscations are programs which are built based upon
an

 Main functions of an OS:

v’ Controlling and monitoring system activities
v" Allocating and assigning system resources
v’ Scheduling operations

e Popular OS: Windows, Mac OS, Linux, iOS, Android...

User |-'l—

t

Application Programs |

#

Operating System |--I—

;

Hardware |

* Break

Slogan for Python

AESE
M @ python

LIFE IS SHORT, USE PYTHON

Life is short, use Python

Review of last lecture

* Von Neumann Architecture

* CPU and memory

* Input devices and output devices
* Programming language

* Operation system

How about the movie

Data Representation and Conversion

* We use positional notation ({712 40%) to represent or encode
numbers in a computer

e Data are stored essentially as binary numbers in a computer

* In practice, we usually represent data using either binary (—i#),
decimal (-+3#), octal (/\3#*) or hexadecimal (-+753# Fl]) number
systems

 We may need to convert data between different number systems

The basic idea of positional notation

* Each positional number system contains two elements, a base (E%%)
and a set of symbols

* Using the decimal system (3 %l Z& %) as an example, its base is 10,
and the symbols are {0, 1, 2, 3,4, 5,6, 7, 8, 9}

e When a number “hits” 9, the next number will not be a different
symbol, but a “1” followed by a “0” (31 1#—)

Decimal number system

* |In the decimal number system, the base is 10, the symbols include 0, 1, 2,
3,45,6,7,8,9

* Every number can be decomposed into the sum of a series of numbers,
each is represented by a positional value times a weight

*N=a,x10"+a,_; x10" 1 +qa,_, x 102 ... + ay X 10° + a_; X
101 +a_, x 1072 ...

° a, .isr’]che positional value (ranging from 0 to 9), while 10" represents the
welgnt

Binary number system

* In the binary system, the base is 2, we use only two symbols 0 and 1
* “10” is used when we hit 2 (3 — ##—)

*N=qa,Xx2"+a,_ {x2" 1 +aq, ,x2"2 . . +ag x 2%+
a_ X2 +a_,x27% ..

* a, is the positional value (ranging from 0 to 1), while 2" represents
the weight

Why use binary number?

* Easy to implement physically
* Simple calculation rules

* Easy to combine arithmetic and logic operations

Hexadecimal number system

* |In the hexadecimal system, the base is 16, we use 16 symbols {0, 1, 2, 3, 4,
5) 6) 7) 8) 9) a) b) CI d) el f}

« “10” is used when we hit 16 (3E+75H—)

eN=a,x16"+a,_; x16" 1 +qa,_, x 16" % ... +ay X 16° + a_; X
161 +a_, x 1672 ...

* a, is the positional value (ranging from 0 to 15), while 16™ represents the
weight

Octal number system

Converting binary number into decimal number

Example (1101.01) ,
=(1 X BFLXPHOR2F L XOFOX2ZTFLK2E)0
=(13.25),

Practice (10110.11),= (?)10

Converting binary number into decimal number

Answer

(10110.11)

=(1X2%44+0 X 2341 X 22+1 X 214+0 X 2941 X 2-141 X 2-
Yoo =(22.75)i

Converting octal number into decimal number

Example (24.67)g=(2 x8'+ 4 x8%+6 x81+7 x82),,

Practice (35.7)g= (?)10

Converting octal number into decimal number

Answer (35.7),=(3 X 81+ 5 X8%+7 X81),,
=(29.875),,

Converting hexadecimal number into decimal
humber

Example (2AB.C),

=(2x162+10x161+11x16°+12x161),
=(683.75)10

PraCtice (A7DE)16: (?)10

Converting hexadecimal number into decimal
humber

Answer

(ATD.E),=(10 X 162+7 X 16'+13 X 16°+14 X 16),
=(2685.875),,

Converting other number system into decimal
system

e Other number system can also be converted into
decimal system in a similar way

* We just need to change the corresponding base

Some tests: converting into decimal system

- (110110)_2 = (?)_10

- (101011.11)_2 = (?)_10
- (120)_8 = (?)_10

. (34.01)_8 = (?)_10

- (BCA)_16 = (?)_10

- (E05.C)_8 = (?)_10

Some tests: converting into decimal system

- (110110)_2 = (118)_10

- (101011.11)_2 = (43.75)_10
- (120)_8 = (80)_10

. (34.01)_8 = (28.015625)_10
- (BCA)_16 = (3018)_10

- (E05.C)_8 = (3589.75)_10

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Converting decimal integer into binary integer

Example: (57)10= (?),

2—5/f 1 Lower position

2| 28.. .0]

2 14 el (57),,=(111001),
2| 7 ..]

2l 3 ..]

4 1. sl Higher position

Converting decimal fraction into binary fraction

Example: (0.875)10= (?),

Higher position
0.875 X2 =1.75 Integer part: 1
0.75 x2=1.5 Integer part: 1
05 x2=1 Integer part: 1

Lower position

Answer: (0.875)10= (0.111),
Practice: (0.6875)19= (?),

Converting decimal fraction into binary fraction

Answer:

0.6875 X 2 =1.375 Integer part: 1 Higher position
0.375 X2 =0.75 Integer part: 0
0.75 X2 =1.5 Integer part: 1

05 x2=1 Integer part: 1

Lower position

So, (0.6875)1,= (0.1011),

Converting decimal number into binary number

* For a decimal number that has both integer and fractional
parts

* Convert the integer and fractional parts separately

* Example: (215.3125)10= (?),

Converting decimal number into binary number

Answer:

(215),, = (11010111),
(215.3125)19 = (11010111.0101),

The one-to-one relationship between binary and
octal numbers

There is a “one-to-one” (——XJ7) relationship between three digits
binary number and one digit octal number

(0)g = (000),
(1)g = (001),
(2)g = (010),

(3)g = (011),
(4)g = (100),
(5)g = (101),
(6)g = (110),
(7)g = (111),

Converting octal number into binary number

* Convert each octal digit into binary number of three digits
* Keep the digit order unchanged

* Example: (0.754)g = (?7),

(0.754) 4= (000.111 101 100) ,
= (0.1111011) ,

* Practice: (16.327)g = (?),

Converting octal number into binary number

Answer:

(16.327)
= (001 110. 011 010 111) ,
= (1110.011010111) ,

Converting hexadecimal number into binary
number

* Convert each hexadecimal digit into binary number of four digits

» Keep the digit order unchanged

* Example: (4C.2E)1 = (?)>

(4C.2E)
= (0100 1100.0010 1110) ,
= (1001100.0010111) ,

* Practice: (AD.7F)1¢= (?)5

Converting hexadecimal number into binary
number

Answer:

(AD.7F)

= (1010 1101.0111 1111) ,
= (10101101.01111111) ,

Converting binary number into octal number

* Starting from lower positions, convert every three digits of the integer part
into a octal digit

* When there is not enough higher positions in the integer part, fill with 0

* Starting from higher positions, convert every three digits of the fractional
part into a octal digit

* When there is not enough lower positions in the fractional part, fill with O

* Keep the digit order unchanged

Converting binary number into octal number

Example:

(0.10111) ,= (000. 101 110) ,= (0.56) ,
(11101.01) ,= (011 101. 010) ,= (35.2) 4

Practice:
(1101101.011)

Converting binary number into octal number

Answer:

(1101101.011) ,= (001 101 101.011) ,
= (155.3) ,

Converting binary number into hexadecimal
humber

Startln? from Iower positions, convert every four digits of the integer
part info a octal digit

« When there is not enough higher positions in the integer part, fill with O

« Starting from hlgher positions, convert every four digits of the fractional
part info a octal™digit

. \6Vhen there is not enough lower positions in the fractional part, fill with

 Keep the digit order unchanged

Converting binary number into hexadecimal
humber

Example:

(11101.01) ,= (0001 1101. 0100) ,
= (1D.4) .,

The units of information (data)

* Bit (Et4%//L): a binary digit which takes either 0 or 1
* Bit is the smallest information unit in computer programming

. IIgyte (5235): 1 byte = 8 bits, every English character is represented by 1
yte

« KB (F%3): 1KB=2710B=1024B

« MB (Jk=35): 1MB=2/20B = 1024 KB
 GB (FJk=5): 1GB=2~30B=1024 MB
 TB (JkJk==5): 1TB =2240B = 1024 GB

Memory and addressing

° , I
A computer > MEMory consists Memory address Memory content
of an ordered sequence of
bytes for storing data ’ y

* Every location in the memory
has a unique address

2000 01000011 | Encoding for character °

2001 01110010 | Encoding for character

* The key difference between 2002 | 01100101 | Encoding for character *

high and low level , 2003 |01110111 | Encoding for character
programming languages is 2004 | 00000

J0000011 | Encoding for number 3
whether programmer has to ,

deal with memory addressing
directly

g @ -, f"j

Practice

«(135.8125),0 = (10000111.1101) ,
«(1314.205)g = (1011001 100.010 000 101)
. (0101010000.0010110011) , = (520.1314),
. (0101010000.0010110011) , = (150.2CC) 4,

Thanks

Odds are the person on your
left is going to be a loser. The
person on your right,
meanwhile, will also be a

loser. And you, in the middle?
What can you expect? Loser.

ORACLE

Larry Ellison, CEO of Oracle Corporation

Programs for human

FRE > EFFIE > =S

%ﬁ'ﬁ;ﬁ\: MUCER-/NEEEREHE

* Right hand around your head
 Left hand around your belly
 Straighten out right hand
 Left hand rests on your hip

* One step to the right while
straighten out left hand

P 0015/02:19 O O0— @ £ =

* Keep down and swing your

ham http://v.youku.com/v_show/id_XNzM1MTgyMTA4.html?from=
y1.2-1-98.3.2-2.1-1-1-1-0

	Slide 1: Introduction to Computer Science: Programming Methodology
	Slide 2: Who I am Guiliang Liu :)
	Slide 3
	Slide 4: Learning Objectives
	Slide 5: Key Topics
	Slide 6: Assessment
	Slide 7: Course Materials
	Slide 8: Course Components
	Slide 9: Indicative Teaching Plans
	Slide 10: Why learn programming?
	Slide 11
	Slide 12: Programmer
	Slide 13: Why be a programmer?
	Slide 14: What is Code? Software? Program?
	Slide 15: Computers are good at following instructions
	Slide 16: Computers
	Slide 17: Are they computers ？
	Slide 18: Computer Hardware
	Slide 19: Von Neumann Architecture
	Slide 20: The theoretical foundation of computer science
	Slide 21: A movie about Turing
	Slide 22: Key components in a computer
	Slide 23: Central Processing Unit
	Slide 24: Central Processing Unit
	Slide 25: Memory/Storage
	Slide 26: Input/output devices
	Slide 27: Any other input devices?
	Slide 28: Any other input devices?
	Slide 29: Any other input devices?
	Slide 30: Any other output devices?
	Slide 31: How the hard disk works
	Slide 32: What can a computer actually understand?
	Slide 33: Programing Language
	Slide 34: Low level language – Assembly Language
	Slide 35: C Language (1969 - 1973)
	Slide 36: C++ Language (1979)
	Slide 37: Java Language (1995)
	Slide 38: Python (1991)
	Slide 39: Language efficiency v.s. development efficiency
	Slide 40: Operating Systems
	Slide 41
	Slide 42: Slogan for Python
	Slide 43: Review of last lecture
	Slide 44: How about the movie
	Slide 45: Data Representation and Conversion
	Slide 46: The basic idea of positional notation
	Slide 47: Decimal number system
	Slide 48: Binary number system
	Slide 49: Why use binary number?
	Slide 50: Hexadecimal number system
	Slide 51: Octal number system
	Slide 52: Converting binary number into decimal number
	Slide 53: Converting binary number into decimal number
	Slide 54: Converting octal number into decimal number
	Slide 55: Converting octal number into decimal number
	Slide 56: Converting hexadecimal number into decimal number
	Slide 57: Converting hexadecimal number into decimal number
	Slide 58: Converting other number system into decimal system
	Slide 59: Some tests: converting into decimal system
	Slide 60: Some tests: converting into decimal system
	Slide 61: Converting decimal integer into binary integer
	Slide 62: Converting decimal fraction into binary fraction
	Slide 63: Converting decimal fraction into binary fraction
	Slide 64: Converting decimal number into binary number
	Slide 65: Converting decimal number into binary number
	Slide 66: The one-to-one relationship between binary and octal numbers
	Slide 67: Converting octal number into binary number
	Slide 68: Converting octal number into binary number
	Slide 69: Converting hexadecimal number into binary number
	Slide 70: Converting hexadecimal number into binary number
	Slide 71: Converting binary number into octal number
	Slide 72: Converting binary number into octal number
	Slide 73: Converting binary number into octal number
	Slide 74: Converting binary number into hexadecimal number
	Slide 75: Converting binary number into hexadecimal number
	Slide 76: The units of information (data)
	Slide 77: Memory and addressing
	Slide 78: Practice
	Slide 79
	Slide 80
	Slide 81: Programs for human

